Products from the photoreaction of $\left(\mathrm{Me}_{3} \mathrm{P}\right)(\mathrm{OC})_{4} \mathrm{OsW}\left(\mathrm{CO}_{5}\right.$ with CCl_{4}; synthesis and isomerization of $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}$

Jonathan L. Male ${ }^{\text {a }}$, Frederick W.B. Einstein ${ }^{\text {a }}$, Weng K. Leong ${ }^{\text {a }}$, Roland K. Pomeroy ${ }^{\text {a. }}{ }^{*}$, David R. Tyler ${ }^{\text {b. }}$
${ }^{3}$ Department of Chemistry. Simon Fraser Unicersity, Burnaby: B.C., Canada V5A IS6
${ }^{1}$ Department of Chemistry, Unirersity of Oregom, Eugenc, OR 9740.3, USA

Received 29 April 1997; received in revised form 30 June 1997

Abstract

Ahstract This paper reports the characterization of the fac- $\mathrm{Os}\left(\mathrm{CO}_{3}\right)_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}(\mathrm{fac}-2)$ product that is formed when $\left(\mathrm{Me}{ }_{2} \mathrm{P}\right)(\mathrm{OC})_{4} \mathrm{OsW}(\mathrm{CO})_{5}$ (1: a complex with a dative $\mathrm{Os}-\mathrm{W}$ bond) is irradiated $\left(\lambda>400 \mathrm{~nm}\right.$) in the presence of CCl_{4}. In an attempt to independently synthesize fac-2, $\mathrm{Os}_{3}\left(\mathrm{CO}_{9}\left(\mathrm{PMe}_{3}\right)_{3}\right.$ was allowed to react with Cl_{2}. The product. however, was mer-cis- $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}$ (mer-cis-2). The mer-cis isomer is converted to the fac isomer (fac-2) by stirring under nitrogen in THF for nine days. The stereochemistry of each compound was confirmed by infrared and NMR spectroscopy and by X-ray crystallography. The $\left[\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)(\mathrm{Cl})(\mu-\mathrm{Cl})\right]_{2}$ compound (3) was also formed as a minor product in the conversion of mer-cis- $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}$ to fac- $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}$. Irradiation $(\lambda>400$ nm) of $\mathrm{Os}\left(\mathrm{CO}_{4}\left(\mathrm{PMe}_{3}\right) \text { in benzene in the presence of } \mathrm{CCl}_{4} \text { gave a product tentatively identifiei as fac-Ost } \mathrm{CO}_{3}\right)_{3}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{CCl}_{3}\right) \mathrm{Cl}(4)$. which results from the oxidative-addition of CCl_{4} to $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)$. © 1997 Elsevier Science S.A.

Ke?words: Photochemistry: Isomerization: Oxidative-addition of CCI $_{4}$: Mer-cis- to fac-isomerization

1. Introduction

We recently reported that irradiation of $\left(\mathrm{Me}_{3} \mathrm{P}\right)(\mathrm{OC})_{4} \mathrm{OsW}(\mathrm{CO})_{5}$ (1) led to heteroiytic cleavage of the $\mathrm{Os}-\mathrm{W}$ dative bond [1]. Among the key experiments to test for homolytic cleavage were metal radical trapping experiments, all of which proved negative. The metal radical traps employed were benzyl chloride, TMIO (1,1,3,3-tetramethylisoindoline-2-oxyl) [2,3]. and carbon tetrachloride. Although no products indicative of metal radicals were detected, a photochemical reaction did take place when 1 was irradiated ($\lambda>400 \mathrm{~nm}$) in the presence of CCl_{4} in $\mathrm{C}_{6} \mathrm{H}_{6}$:

$$
\begin{aligned}
& \left(\mathrm{Me}_{3} \mathrm{P}\right)(\mathrm{OC})_{4} \mathrm{OsW}(\mathrm{CO})_{5}+\mathrm{CCl}_{4}
\end{aligned}
$$

[^0]In this paper, we report the synthesis and characterization of the Os-containing product formed in Eq. (1). namely fac- $\mathrm{Os}\left(\mathrm{CO}_{3}\right)_{\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2} \text { (fac-2). During the in- }}$ vestigation, we discovered a synthesis of the mer-cis$\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}$ isomer (mer-cis-2) and the conditions for its transformation to the fac isomer. The fac- $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{CCl}_{3}\right) \mathrm{Cl}$ molecule (4) was also synthesized and its transformation to $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}$ was investigated. The X-ray structures of fac$\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}$ and mer-cis-Os(CO$)_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}$ are also reported. Finally, the synthesis of $\left[\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)(\mathrm{Cl})(\mu-\mathrm{Cl})\right]_{2}(3)$ is described.

2. Results and discussion

> 2.I. Synthesis of mer-cis-Os(CO) $)_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}$ (mer-cis-2) and fac-Os(CO) $)_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}(\mathrm{fac}-2)^{2}$

The Os-containing product formed in Eq. (1) has IR $\nu(\mathrm{CO})$ bands at 2125,2050 , and $2004 \mathrm{~cm}^{-1}$. These bands were tentatively assigned to $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}$ by comparison to the spectra of the related complexes
Table 1
Selected IR and NMR data

Compound	${ }^{1} \mathrm{H}$ NMR (ppm) ${ }^{\text {a }}$	${ }^{31} \mathrm{P}(1 \mathrm{H}) \mathrm{NMR} . \mathrm{Ppm}^{3}$	${ }^{13} \mathrm{C}(1 \mathrm{H}) \mathrm{NMR}(\mathrm{ppm})^{\text {b }}$	IR $\nu(\mathrm{CO})$ bands (cm^{-1})
mer-cis-Os(CO) ${ }_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}$	$1.93\left(\mathrm{~d} . \mathrm{CH}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{H}}=11.6 \mathrm{~Hz}\right)$	-36.10 (s. PMe_{3})	18.12 (d. $\mathrm{CH}_{3} .{ }^{\prime} \mathrm{J}_{\mathrm{P}-\mathrm{C}}=42.3 \mathrm{~Hz}$). 167.23 (d, $\mathrm{CO} .1 \mathrm{C} .{ }^{2} J_{\mathrm{P}-\mathrm{C}}=6.9 \mathrm{~Hz}$).	2145 (vw), 2066 (s), 2019 (m) 2064 (s), 2010 (m) ${ }^{\text {d }}$
fac- $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}$	$1.77\left(\mathrm{~d}, \mathrm{CH}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{H}}=11.5 \mathrm{~Hz}\right)$	-31.78 (s. PMe_{3})		2127 (m), 2054 (s), 2012 (m) 2125 (m), 2050 (s), 2004 (s$)^{\text {d }}$
$\left[\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)(\mu-\mathrm{Cl}) \mathrm{Cl}\right]_{2}$	$\begin{aligned} & 1.76\left({\left.\mathrm{~d}, \mathrm{CH}_{3 .} \cdot{ }^{2} J_{\mathrm{P}-\mathrm{H}}=11.8 \mathrm{~Hz}\right)}_{1.80\left(\mathrm{~d}, \mathrm{CH}_{3},-J_{\mathrm{P}-\mathrm{H}}=11.4 \mathrm{~Hz}\right)}\right. \end{aligned}$		$\begin{array}{r} 15.5\left(\mathrm{~d}, \mathrm{CH}_{3} \cdot J_{\mathrm{P}-\mathrm{C}}=43.1 \mathrm{~Hz}\right), \\ 170.5\left(\mathrm{~d}, C \mathrm{CO}, 4 \mathrm{C} \cdot J_{\mathrm{P}-\mathrm{C}}=10.0 \mathrm{~Hz}\right), \\ 170.9\left(\mathrm{~d}, \mathrm{br}, C O, 11 \mathrm{C} \cdot J_{\mathrm{P}-\mathrm{C}}=11.0 \mathrm{~Hz}\right), \\ 171.9\left(\mathrm{~d}, \mathrm{br}, C \mathrm{CO}, 12 \mathrm{C} \cdot J_{\mathrm{p}, \mathrm{C}}=5.8 \mathrm{~Hz}\right) \end{array}$	2047 (s). 1971 (s)
$\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{3}\right)_{3}$	$1.81\left(\mathrm{~d} . \mathrm{CH}_{3} .^{2} J_{\mathrm{P}-\mathrm{H}}=10.2 \mathrm{~Hz}\right)$	-58.20 (s. PMe;	$\begin{aligned} & 23.19\left(\mathrm{~d}, \mathrm{CH}_{3},{ }^{\prime} J_{\mathrm{P}-\mathrm{C}}=37.2 \mathrm{~Hz}\right), \\ & 183.6(\mathrm{~s}, \mathrm{CO}, 3 \mathrm{C}), 196.7(\mathrm{~s}, C O .6 \mathrm{C}) \end{aligned}$	1977 (sh.m), 1965 (vs.br), 1920 (s) ${ }^{\text {c }}$
$\begin{aligned} & \mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}{ }_{2} \\ & \mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}_{2} \end{aligned}$				2123 (w$), 2048$ (s , 2017 (w). 1978 ((s) ${ }^{\text {e }}$
$\mathrm{PMe}_{3}{ }^{\text {a }}$	$0.97\left(\mathrm{~d}, \mathrm{CH}_{3},{ }^{2} \mathrm{~J}_{\text {P- }}=1.6 \mathrm{~Hz}\right)$	-60.53 (s. PMe:)		2144 (w), 2070 (vs), 2023 (s) ${ }^{\text {c }}$
OPMe_{3}	1.38 (d. $\mathrm{CH}_{3},{ }^{2} J_{\mathbf{P}-\mathbf{H}}=13.2 \mathrm{~Hz}$)			
$\mathrm{H}_{2} \mathrm{O}$	2.21 (s. $\mathrm{H}_{2} \mathrm{O}$)			

[^1]Table 2
Crystal data and structure refinement for mer-cis- $\mathrm{Os}\left(\mathrm{CO}_{3}\right)^{\left.\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}(\text { mer-cis-2 }) \text { and fat-Os(CO) }\right)_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}(\text { fac-2) }}$

	mer-cis-2	$f a r-2$
Formula	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{OsP}$	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{OsP}$
FW	421.22	421.22
Temp (${ }^{\circ} \mathrm{C}$)	21	21
Wavelength (A)	0.71069	0.71069
Cryst system	Monoclinic	Monoclinic
Space group ${ }^{\text {a }}$	P21/1'	P2,/11
$a(\AA)$	6.4377(7)	6.4691(4)
$b(\AA)$	15.3782(13)	13.2890(11)
$c(A)$	12.3148(10)	27.915(2)
β (deg)	$100.744(8)$	$95.261(6)$
$V\left(\AA^{3}\right)$	1197.8(2)	2389.7(3)
Z	4	8
2θ range of unit cell (deg)	35.0-45.0	32.2-42.1
D(calc.) ($\mathrm{g} \mathrm{cm}^{-3}$)	2.336	2.342
$\mu\left(\right.$ Mo, K α) (cm^{-1})	112.15	112.43
Cryst size (mm)	$0.16 \times 0.21 \times 0.27$	$0.11 \times 0.18 \times 0.32$
Transmission coeff.	0.176-0.271	0.0857-0.376
Scan range (2H) (deg)	3.6-47.0	3.6-50.0)
Scan width (ω) (deg)	$0.70+0.35 \tan 4$	$0.70+0.35 \tan 4$
Scan width (ω) (deg)	$0.70+0.35 \tan q$	$0.70+0.35 \tan 9$
Scan rate (ω) (deg min ${ }^{-1}$)	0.573-3.296	0.573-3.296
No. of unique reflns.	1759	4176
No. of obs. reflns.	1.583	3559
No. of parameters	147	242
No. of restraints	9	0
$R^{\text {b }}$	0.016	0.024
$R_{\text {w }}$	0.021	0.034
Instrument instability factor (k)	0.00005	0.0002
Extinction parameter (r^{*})	$0.411(14)$	0.57(3)
Largest shift/esd in final is cycle	0.05	0.12
Largest positive/negative residual electron density in final diff map (e $A{ }^{\text {a ') }}$	$0.44(9) /-0.51(9)$	(0.82(15)/-1.07(15)
Goodness-of-fit ${ }^{\text {d }}$	1.6	1.6
$F(0) 0$)	775.78	1540.15

$1 / 2+x .1 / 2-1.1 / 2+2$
${ }^{11} R=\Sigma\| \| F_{i 1}\left|-\left|F_{i} \| / \Sigma\right| F_{i 1}\right|$.
${ }^{c} R_{\mathrm{u}}=\left(\sum_{\mathrm{w}}\left(\left|F_{\mathrm{n}}\right|-\left|F_{\mathrm{s}}\right|\right)^{\prime \prime} / \sum_{\mathrm{w}}\left(\left|F_{n}\right|^{2}\right)^{1 / 2}\right.$ 。

$\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}[4,5]$ and $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}_{2}[6](\mathrm{Ta}-$ ble 1). (The stereochemistry of the $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PR}_{3}\right) \mathrm{Cl}_{2}$ ($\mathrm{R}=\mathrm{Ph}, \mathrm{Et}$) products was not addressed. and moreover the number and intensities of the CO-stretching bands reported in the IR spectrum of $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$ suggested the presence of more than one isomer [4.5].) In order to identify definitively $\mathrm{Os}\left(\mathrm{CO}_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}\right.$ and its stereochemistry, it was decided to prepare the molecule by an alternate route. The $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}[4,5]$ and $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}_{2}[6]$ complexes had been previously prepared by the reaction of $\mathrm{Os}_{3}\left(\mathrm{CO}_{4}\right)_{(}\left(\mathrm{PR}_{3}\right)_{3}$ with Cl_{2} (Eq. (2)), and thus the reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{3}\right)_{3}$ with Cl_{2} appeared a viable pathway to $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}$.
$\mathrm{Os}_{3}(\mathrm{CO})_{4}\left(\mathrm{PR}_{3}\right)_{3} \xrightarrow[\mathrm{R}=\mathrm{Et} . \mathrm{Ph}^{\mathrm{Cl}_{3}}]{\overrightarrow{\mathrm{P}}} 3 \mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PR}_{3}\right) \mathrm{Cl}_{2}$

The reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{3}\right)_{3}$ in toluene with an excess of Cl_{2} at $0^{\circ} \mathrm{C}$ was instantaneous; the clear orange solution changed io yellow and a white precipitate formed. The precipitate was recrystallized from THFhexanes. An IR spectrum of this product indicated that it was not the same as the product from the reaction given in Eq. (1). An X-ray structure determination revealed it to be mer-cis-Osi(CO) $)_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}$ (mer-cis2) (Fig. 1: Tables 2-4). A complete discussion of this structure is presented in the Supplementary Material.

The similarities in the infrared spectrum of mer-cis-2 to the product in Eq. (1) suggested that the product in Eq. (1) may be a stereoisomer of mer-cis-2. Literature precedents suggested a fac configuration: for example. $\mathrm{Ru}(\mathrm{CO})_{3}\left(\mathrm{OPPh}_{3}\right) \mathrm{Br}_{2}$ has the fac configuration [7], and the fac geometry was also suggested for the $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right) \mathrm{H}_{2}$ complex [8]. To investigate the

Fig. 1. Molecular structure of the mer-cis- $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}$ (mer-cis-2) complex showing the atom-numbering scheme.
stereoisomerization reactions of mer-cis-2, a THF solution of mer-cis-2 was stirred at room temperature in the dark under N_{2} for nine days (Eq. (3)). After this time, an infrared spectrum of the solution showed only new $\nu(\mathrm{CO})$ bands at 2127 (s), 2054 (vs), 2011 (s), and 1982 $(m) \mathrm{cm}^{-1}$. Column chromatography of the reaction mixture afforded two products, and the major product was recrystallized from $\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ to afford colorless needles. A crystal structure determination of this product revealed it to be fac-2 (Table 2).

$$
\begin{aligned}
& \text { mer-cis- } \mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}
\end{aligned}
$$

Table 3
Selected bond lengths (\AA) of mer-cis- $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}($ mer-cis2)

Os(1)-P(1)	$2.341(1)$	$\mathrm{Os}(1)-\mathrm{C}(11)$	$1.978(6)$
$\mathrm{Os}(1)-\mathrm{Cl}(1)$	$2.427(1)$	$\mathrm{Os}(1)-\mathrm{C}(12)$	$1.957(6)$
$\mathrm{Os}(1)-\mathrm{Cl}(2)$	$2.457(1)$	$\mathrm{Os}(1)-\mathrm{C}(13)$	$1.856(5)$

Table 4
Selected bond angles (deg) of mer-cis-Os(CO) $)_{1}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}$ (mer-cis2)

$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{Cl}(1)$	$87.36(4)$	$\mathrm{CI}(1)-\mathrm{Os}(1)-\mathrm{C}(12)$	$89.5(1)$
$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{C}(12)$	$90.5(1)$	$\mathrm{CI}(1)-\mathrm{Os}(1)-\mathrm{Cl}(2)$	$87.37(5)$
$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{C}(13)$	$94.0(2)$	$\mathrm{Cl}(1)-\mathrm{Os}(1)-\mathrm{C}(13)$	$178.4(2)$
$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{C}(11)$	$91.0(1)$	$\mathrm{Cl}(1)-\mathrm{Os}(1)-\mathrm{C}(11)$	$87.6(1)$
$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{Cl}(2)$	$174.61(4)$	$\mathrm{Cl}(2)-\mathrm{Os}(1)-\mathrm{C}(12)$	$90.6(1)$
$\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(12)$	$176.6(2)$	$\mathrm{Cl}(2)-\mathrm{Os}(1)-\mathrm{C}(13)$	$91.3(2)$
$\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(13)$	$91.5(2)$	$\mathrm{Cl}(2)-\mathrm{Os}(1)-\mathrm{C}(11)$	$87.7(1)$
$\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{C}(13)$	$91.5(2)$		

Fig. 2. Molecular structure of the fac- $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}(f a c-2)$ complex showing the atom labeling scheme.

The structure of fac-2 is shown in Fig. 2 and selected bond lengths and bond angles are listed in Tables 5 and 6, respectively. The asymmetric unit cell contains two crystallograpHically distinct molecules, and the osmium atom has octahedral coordination. A complete discussion of this structure is presented in the Supplementary Material.

2.2. The spectroscopic properties of fac$\mathrm{Os}^{2} \mathrm{CO}_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}(\mathrm{fac}-2)$

The IR spectrum in the CO region of fac-2 (Table 1) is identical to that observed for the product obtained by irradiation of $\mathbf{1}$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ in the presence of CCl_{4} (Eq. (1)), and it is consistent with the retention of a fac geometry in solution. The pattern and intensity of the $\nu(\mathrm{CO})$ bands is analogous to that of fac$\mathrm{Ru}(\mathrm{CO})_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right) \mathrm{Cl}_{2}$ [9]. In nujol, the infrared spectrum of fac-2 exhibits two bands at 318(s) and 296(s) cm^{-1}, assigned to $\boldsymbol{\nu}(\mathrm{Os}-\mathrm{Cl})$ byanalogy to $\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(\nu(\mathrm{Os}-\mathrm{Cl}): 306(\mathrm{~m})$ and $284(\mathrm{~m})$ cm^{-1}) [5], $\mathrm{Os}\left(\mathrm{CO}_{3}\right)_{3}\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}_{2}(\nu(\mathrm{Os}-\mathrm{Cl}): 312(\mathrm{~s})$ and $289(\mathrm{~s}) \mathrm{cm}^{-1}$) [6,9] and to those in mer-cis-2 (see below). That both bands are intense is consistent with the Cl ligands being mutually $c i s$, as in the fac arrangement.

The ${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\}$ NMR spectrum of fac-2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}-$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-40^{\circ} \mathrm{C}$ is consistent with the solid-state structure. It showed two doublets in the carbonyl region at $167.2 \mathrm{ppm}\left(2 \mathrm{C},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=9.2 \mathrm{~Hz}\right.$) and 168.0 ppm (1 C , ${ }^{2} J_{\mathrm{P}-\mathrm{C}}=107.6 \mathrm{~Hz}$) (Table 1). The chemical shift of the resonance at 167.2 ppm of relative intensity 2 is ideniical to that of the resonance of the CO ligand trans to a Cl atom and cis to a PMe_{3} group in mer-cis-2. Both resonances have a small two-bond carbon-phosphorus

Table 5
Selected bond lengths (\AA) of fac- $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}($ fac- 2$)$

Molecule I		Molecule 2	
Os(1)-Cl(11)	$2.422(2)$	$\mathrm{Os}(2)-\mathrm{Cl}(21)$	$2.418(2)$
Os(1)-Cl(12)	$2.426(1)$	$\mathrm{Os}(2)-\mathrm{Cl}(22)$	$2.426(2)$
$\mathrm{Os}(1)-\mathrm{P}(1)$	$2.399(1)$	$\mathrm{Os}(2)-\mathrm{P}(2)$	$2.402(2)$
$\mathrm{Os}(1)-\mathrm{C}(11)$	$1.890(7)$	$\mathrm{Os}(2)-\mathrm{C}(21)$	$1.882(7)$
$\mathrm{Os}(1)-\mathrm{C}(12)$	$1.912(6)$	$\mathrm{Os}(2)-\mathrm{C}(22)$	$1.889(6)$
Os(1)-C(13)	$1.959(7)$	$\mathrm{Os}(2)-\mathrm{C}(23)$	$1.959(7)$

Table 6
Selected bond angles (deg) of fac-Os(CO) $3_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}(f a c-2)$

Molecule 1	Molecule 2		
$\mathrm{Cl}(11)-\mathrm{Os}(1)-\mathrm{Cl}(12)$	$90.24(6)$	$\mathrm{Cl}(21)-\mathrm{Os}(2)-\mathrm{Cl}(22)$	$89.77(6)$
$\mathrm{Cl}(11)-\mathrm{Os}(1)-\mathrm{P}(1)$	$86.56(5)$	$\mathrm{Cl}(21)-\mathrm{Os}(2)-\mathrm{P}(2)$	$87.79(6)$
$\mathrm{Cl}(11)-\mathrm{Os}(1)-\mathrm{C}(12)$	$88.6(2)$	$\mathrm{Cl}(21)-\mathrm{Os}(2)-\mathrm{C}(22)$	$87.4(2)$
$\mathrm{Cl}(12)-\mathrm{Os}(1)-\mathrm{P}(1)$	$87.01(6)$	$\mathrm{Cl}(22)-\mathrm{Os}(2)-\mathrm{P}(2)$	$85.18(6)$
$\mathrm{Cl}(12)-\mathrm{Os}(1)-\mathrm{C}(13)$	$86.4(2)$	$\mathrm{Cl}(22)-\mathrm{Os}(2)-\mathrm{C}(23)$	$89.9(2)$
$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{C}(1)$	$91.6(2)$	$\mathrm{P}(2)-\mathrm{Os}(2)-\mathrm{C}(21)$	$92.8(2)$
$\mathrm{P}(11-\mathrm{Os}(1)-\mathrm{C}(12)$	$93.0(2)$	$\mathrm{P}(2)-\mathrm{Os}(2)-\mathrm{C}(22)$	$92.5(2)$
$\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(12)$	$90.8(3)$	$\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{C}(22)$	$94.4(3)$
$\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(13)$	$93.8(3)$	$\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{C}(23)$	$91.4(3)$
$\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{C}(13)$	$93.5(3)$	$\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{C}(23)$	$92.2(3)$
$\mathrm{Cl}(11)-\mathrm{Os}(1)-\mathrm{C}(11)$	$178.1(2)$	$\mathrm{Cl}(21)-\mathrm{Os}(2)-\mathrm{C}(21)$	$178.1(2)$
$\mathrm{Cl}(11)-\mathrm{Os}(1)-\mathrm{C}(13)$	$88.1(2)$	$\mathrm{Cl}(21)-\mathrm{Os}(2)-\mathrm{C}(23)$	$87.9(2)$
$\mathrm{Cl}(12)-\mathrm{Os}(1)-\mathrm{C}(11)$	$90.4(2)$	$\mathrm{Cl}(22)-\mathrm{Os}(2)-\mathrm{C}(21)$	$88.5(2)$
$\mathrm{Cl}(12)-\mathrm{Os}(1)-\mathrm{C}(12)$	$178.8(2)$	$\mathrm{Cl}(22)-\mathrm{Os}(2)-\mathrm{C}(22)$	$176.4(2)$
$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{C}(13)$	$171.5(2)$	$\mathrm{P}(2)-\mathrm{Os}(2)-\mathrm{C}(23)$	$173.5(2)$

coupling characteristic of a cis coupling in octahedral complexes. ${ }^{2}$ The resonance of the $f a c$ isomer at 168.0 ppm of relative intensity 1 exhibits a iarge two-bond carbon-phosphorus coupling (${ }^{2} J_{\mathrm{P}-\mathrm{C}}=107.6 \mathrm{~Hz}$) characteristic of a trans coupling. ${ }^{3}$

2.3. The spectroscopic properties of mer-cis$\mathrm{Os}\left(\mathrm{CO}_{3}\right)_{\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}(\text { mer-cis-2 })}$

The CO-stretching region in the IR spectrum of mer-cis-2 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three bands at $2145(\mathrm{vw})$, $2066(\mathrm{~s})$, and $2019(\mathrm{~m}) \mathrm{cm}^{-1}$. These bands positions are similar to those reported for $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}_{2}$ in cyclohexane ($2144(\mathrm{w}), 2070(\mathrm{vs})$, and $2023(\mathrm{~s}) \mathrm{cm}^{-1}$) [6]. The very weak band at the highest frequency is attributed to the symmetric stretch [15] of the two trans

[^2]CO ligands, for which the dipole moment change is expected to be small. Bands at $310(\mathrm{~m})$ and 279 (s) cm^{-1} (nujol) are assigned to $\nu(\mathrm{Os}-\mathrm{Cl})$ vibrations by analogy to the literature $[5,6] .{ }^{4}$
The ${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\}$ NMR spectrum of the complex in $\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-40^{\circ} \mathrm{C}$ showed two doublets at $167.2 \mathrm{ppm}\left(1 \mathrm{C},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=6.9 \mathrm{~Hz}\right)$ and $172.4 \mathrm{ppm}(2 \mathrm{C}$, ${ }^{2} J_{\mathrm{P}-\mathrm{C}}=7.6 \mathrm{~Hz}$) in the carbonyl region. Both of these resonances exhibited a small, two-bond, carbon-phosphorus coupling typical of a CO ligand cis to a phosphine ligand. ${ }^{2}$ This result indicates that both carbonyl ligands are cis to the PMe_{3} ligand, in agreement with the solid-state structure.

2.4. Preparation of $\left.\operatorname{lOs}(\mathrm{CO})_{2}(\mathrm{PMe})(\mathrm{Cl})(\mu-\mathrm{Cl})\right]_{2}$ (3)

In the preparation of fac-2 from mer-cis-2 described above, a minor product also formed (Eq. (3)). This product was separated from fac-2 by column chromatography and recrystallized from $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give small, white, star-shaped crystals. Repeated attempts to obtain a crystal of this complex that was suitable for X-ray crystallography were unsuccessful, but spectroscopic analysis suggests the compound is $\left[\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)(\mathrm{Cl})(\mu-\mathrm{Cl})\right]_{2}(3)$. The $\nu(\mathrm{CO})$ region of the material in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two strong bands at $2050(\mathrm{~s})$ and $1983(\mathrm{~s}) \mathrm{cm}^{-1}$. These frequencies are very similar to the spectrum reported for $\left[\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)(\mathrm{Cl})(\mu-\mathrm{Cl})\right]_{2}\left(2051(\mathrm{~s})\right.$ and $1981(\mathrm{~s}) \mathrm{cm}^{-1}$ [6]). The infrared spectrum of $\mathbf{3}$ in nujol also had bands at $314(\mathrm{~m}), 273(\mathrm{~m})$, and $242(\mathrm{~m}) \mathrm{cm}^{-1}$, which are assigned to $\nu(\mathrm{Os}-\mathrm{Cl})$ vibrations by analogy to $\left[\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)(\mathrm{Cl})(\mu-\mathrm{Cl})\right]_{2}(\nu(\mathrm{Os}-\mathrm{Cl}): 321(\mathrm{~s}), 280(\mathrm{~s})$, and $242(\mathrm{~m}) \mathrm{cm}^{-1}$). ${ }^{5}$

The mass spectrum (EI) of 3 exhibits a peak envelope with a maximum at $753 \mathrm{~m} / \mathrm{z}$, assigned to $\left[\mathrm{Os}_{2}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}_{3}\right]^{+}$. Compound 3 started to decompose at $257^{\circ} \mathrm{C}$, which is much higher than the melting points of mer-cis-2, fac-2 (119 ${ }^{\circ} \mathrm{C}$, dec), and $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}\left(90^{\circ} \mathrm{C}\right)$, and it is similar to $\left[\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2} \mathrm{l}_{2}\left(290^{\circ} \mathrm{C}\right)[6]\right.$.

Carbon monoxide inhibited the conversion of 2 to 3 (see Supplementary Material), and furthermore, the process is reversible: CO reacts with $\mathbf{3}$ to give fac-2 as the sole observable product. This reactivity supports the

[^3]proposed identity of the dimeric species and it also suggests that fac-2 and 3 are in equilibrium (Eq. (4)).
\[

$$
\begin{align*}
& 2 \text { fac- } \mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2} \\
& \quad \rightleftarrows\left[\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)(\mathrm{Cl})(\mu-\mathrm{Cl})\right]_{2}+2 \mathrm{CO} \tag{4}
\end{align*}
$$
\]

Similar equilibria have been established for $\left[\mathrm{Ru}\left(\mathrm{CO}_{3} \mathrm{Cl}_{2}\right]_{2} / \mathrm{Ru}(\mathrm{CO})_{4} \mathrm{Cl}_{2} \quad[9], \quad\right.$ and $\left[\mathrm{Ru}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(\mathrm{Cl})\left(\mu-\mathrm{Cl} \dot{5}_{2}^{2} /\right.\right.$ all-cis $-\mathrm{Ru}(\mathrm{CO})_{2^{-}}$ $\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{Cl}_{2}$ [18].

2.5. Proposed structuie of $\left[\mathrm{Os}\left(\mathrm{CO}_{2}\left(\mathrm{PMe}_{3}\right)(\mathrm{Cl})(\mu-\mathrm{Cl})\right]_{2}\right.$ (3)

The ${ }^{1} \mathrm{H}$ NMR spectrum of 3 in $\mathrm{CD}_{3} \mathrm{CN}$ at $35^{\circ} \mathrm{C}$ (Table 1) shows two sets of doublets at 1.76 ppm (${ }^{2} J_{\mathrm{P}-\mathrm{H}}=11.7 \mathrm{~Hz}$) and $1.80 \mathrm{ppm}\left({ }^{2} J_{\mathrm{P}-\mathrm{H}}=11.7 \mathrm{~Hz}\right)$ in the ratio $3: 1$, respectively, consistent with the presence of two isomers in solution. ${ }^{6}$ The corresponding ${ }^{31} \mathrm{P}$ ($\left.{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows two singlets at -30.73 and -30.37 ppm also in the ratio $3: 1$, respectively. Repeated recrystallizations and preparations of the dimeric compound did not alter the IR or NMR spectra of the mixture, suggesting the additional peaks are not due to impurities.

The ${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\}$ NMR spectrum of 3 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-40^{\circ} \mathrm{C}$ was unfortunately of poor quality but showed three sets of doublets in the carbonyl region at $\delta 170.5$ $\left({ }^{2} J_{\mathrm{P}-\mathrm{C}}=10.0 \mathrm{~Hz}\right), 170.9\left({ }^{2} J_{\mathrm{P}-\mathrm{C}}=11.0 \mathrm{~Hz}\right)$ and 171.9 $\mathrm{ppm}\left({ }^{2} J_{\mathrm{P}-\mathrm{C}}=5.8 \mathrm{~Hz}\right.$) in the ratio 4:11:12, respectively. The latter two resonances are assigned to the major isomer, with the peak at $\delta 170.5 \mathrm{ppm}$ being attributed to the minor isomer and the second peak of the minor isomer being accidentally degenerate with a resonance from the major isomer. There was no evidence in the ${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right) \mathrm{NMR}$ spectrum that would suggest an isomer with a CO ligand trans to a PMe_{3} group.

The two most likely structural arrangements of 3 that maintain the $\mathrm{Os}_{2}(\mathrm{Cl})_{2}(\mu-\mathrm{Cl})_{2}$ core (analogous to $\left[\mathrm{M}(\mathrm{CO})_{3}(\mathrm{Cl})(\mu-\mathrm{Cl})\right]_{2}(\mathrm{M}=\mathrm{Ru}[16,19]$, Os [20]) and are consistent with all the prior spectroscopic data and electronic discussions [7] are shown in Scheme 1. ${ }^{7}$

Both structures would give rise to two slightly different ${ }^{31} \mathrm{P}\left\{{ }^{\prime} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR environments for the PMe_{3} ligand, yet in the IR spectrum the different $\nu(\mathrm{CO})$

[^4]

(A)

(B)

Scheme 1. (A) Proposed structural isomers of $\left[\mathrm{Us}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)(\mathrm{Cl})\left({ }^{\mu}-\mathrm{Cl}\right)\right]_{2}(3)$.
bands for the two isomers would probably not be discernible in polar solvents such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. At present, it is not known whether the dimeric species is formed from a five coordinate unsaturated, fluxional species interacting with a saturated six coordinate species or from two five coordinate species, although the former pathway is mechanistically more likely.

2.6. Contersion of mer-cis-2 to fac-2 to 3

The conversion of mer-cis-2 to fac-2 and then to 3 in $\mathrm{CD}_{3} \mathrm{CN}$ at $35^{\circ} \mathrm{C}$ was also studied by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopy. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra and the resonance assignments are shown in Fig. 3. ${ }^{8}$ After 4 h , three new ${ }^{31} P\left\{{ }^{1} H\right\}$ NMR resonances were observed that are assigned to fac-2 and the two isomeric forms of 3 (Fig. 3). After 18 h , the major product was fac- 2 with traces of 3. After 47 h , the $\left.{ }^{31} \mathrm{P}^{1} \mathrm{H}\right\}$ NMR resonance of mer-cis-2 was not detectable and the resonance of fac-2 was drastically reduced; the major signals present were those of 3. Finally, after 283 h , the only detectable resonances were those of 3 . An infrared spectrum of the $p(\mathrm{CO})$ region showed only two bands attributed to the two isomers of 3 (Table 1). Control experiments with $\mathrm{PMe}_{3}, \mathrm{OPMe}_{3}, \mathrm{H}_{2} \mathrm{O}$, and 4 demonstrated that these species were not present.

It was previously reported that in $\mathrm{CH}_{3} \mathrm{CN}$ the all-trans-Ru(CO) $\mathbf{2}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{Cl}_{2}$ species forms $\mathrm{Ru}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\left(\mathrm{NCMe}^{-}\right) \mathrm{Cl}_{2}$ exclusively in the cisarrangement [18]. In the present study, there was no ${ }^{1} \mathrm{H}$, ${ }^{31} P\left\{{ }^{\prime} \mathrm{H}\right\}$ NMR or IR spectroscopic evidence to suggest the presence of $\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{NCCD}_{3}\right) \mathrm{Cl}_{2}$. Although not definitive evidence, the fact that $\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{NCCD}_{3}\right) \mathrm{Cl}_{2}$ was not observed suggests that the isomerization of mer-cis-2 to fac-2 goes by way of a nondissociative pathway, such as a trigonal twist mechanism. Trigonal twist mechanisms have been implicated in the isomerization of a number of related complexes, as for example in $\mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{CY})\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{3}$ $(\mathrm{Y}=\mathrm{S}, \mathrm{Se})[21]$ and $\mathrm{Ru}(\mathrm{CO})(\mathrm{H})_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ [22].

[^5]
2.7. Tentative identification of fac-

 $\mathrm{Os}\left(\mathrm{CO}_{3}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{CCl}_{3}\right) \mathrm{Cl}\right.$ (4)Irradiation ($\lambda>400 \mathrm{~nm}$) of $\mathrm{Os}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{3}\right)$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ in the presence of CCl_{4} or stirring a solution of $\mathrm{Os}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{3}\right)$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ in the presence of CCl_{4} at room temperature in the absence of light for 18 h gave a product with three $\nu(\mathbf{C O})$ bands in the IR spectrum at $2118(\mathrm{~m}), 2054(\mathrm{~s})$, and $2010(\mathrm{~s}) \mathrm{cm}^{-1}$ and a doublet in the ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta 0.92\left({ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{H}}=10.4 \mathrm{~Hz}\right)$ in $\mathrm{C}_{6} \mathrm{H}_{6}$. The frequencies and intensities of these bands are similar to those of fac-2 in $\mathrm{C}_{6} \mathrm{H}_{6}$ (See Table SII, Supplementary Material). The IR spectrum of 4 also resembles that of $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{3} \mathrm{~F}_{7}\right)(\mathrm{I}): 2103(\mathrm{w})$, 2051(s), and 2035(m) in $\mathrm{C}_{2} \mathrm{Cl}_{4}$ [23]. It is proposed therefore that the product of the reaction is fac$\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{CCl}_{3}\right) \mathrm{Cl}$ (4) (Eq. (5)). (Also, note that

Fig. 3. The ${ }^{31} \mathrm{P}\left({ }^{\prime} \mathrm{H}\right\}$ NMR spectra of mer-cis- $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}$ (mer-cis-2) in $\mathrm{CD}_{3} \mathrm{CN}$ showing the conversion to fac$\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}(\mathrm{fac}-2)$ and $\left[\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)(\mu-\mathrm{Cl})(\mathrm{Cl})\right]_{2}(3)$ at $35^{\circ} \mathrm{C}$ over the time period $0-283 \mathrm{~h}$. The peak marked with \perp is assigned to the mer form; the peak marked with $*$ is assigned to the fac isomer; the signals marked with \# are attrihuted to the two isomers of 3.
$\mathrm{Os}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{3}\right)$ irradiated in the presence of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}$ yielded $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)(\mathrm{Cl})$ [1].)

$$
\begin{align*}
& \mathrm{Os}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{3}\right)+\mathrm{CCl}_{4} \\
& \xrightarrow{h \nu(\lambda>4(1) n \mathrm{~nm})} \\
& -\mathrm{CO} \tag{5}\\
& \mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{CCl}_{3}\right)(\mathrm{Cl})
\end{align*}
$$

Due to its instability, repeated attempts to isolate 4 for complete characterization were unsuccessful. 9 , 10.11

An alternative possibility is that the initial photoproduct in Eq . (5) is $\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{CCl}_{2}\right) \mathrm{Cl}_{2} .{ }^{12} \mathrm{Such}$ a complex, however, would exhibit only two $\nu(\mathbf{C O})$ bands in the solution IR spectrum, and would not readily convert to fac-2. Likewise, a dimeric species such as 3. if present, would also be expected to show two $\boldsymbol{\nu}(\mathrm{CO})$ bands. Other possibilities are $\left[\mathrm{Os}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{3}\right)(\mathrm{X})\right]^{+}[\mathrm{Cl}]^{-}\left(\mathrm{X}=\mathrm{CCl}_{3}, \mathrm{Cl}\right) .{ }^{13}$ Given that $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{CH}_{3}\right) \mathrm{Cl}$ has IR $\nu(\mathrm{CO})$ bands at 2097(s), 2027(s), and 1982(s) cm^{-1} [28], these data would seem to further support the idea that the identity of the photoproduct is $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{CCl}_{3}\right) \mathrm{Cl}$.

A ${ }^{13} \mathrm{C}\left({ }^{\prime} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Os}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{3}\right)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at room temperature in the presence of an excess

[^6]of CCl_{4} was run before and after irradiation ($\lambda>400$ nm) for 3 h . The NMR spectrum showed that the carbonyl resonance (189.6 ppm) due to $\mathrm{Os}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{3}\right)$ had been replaced by three major resonances at $\delta 169.3$ $\left(\mathrm{CO},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=100.6 \mathrm{~Hz}\right), 170.2\left(\mathrm{CO},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=7.6 \mathrm{~Hz}\right)$, $170.8\left(\mathrm{CO},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=7.8 \mathrm{~Hz}\right.$). Unfortunately, the poor signal-to-noise ratio prohibited a meaningful integration of the peak areas of the signals. The spectrum is, however, consistent with a fac configuration and the chemical shifts of the resonances are similar to those observed for 3, mer-cis-2, and fac-2.

3. Experimental

3.1. General methods

All manipulations were performed under nitrogen or argon by using standard Schlenk, drybox, or vacuum line techniques, unless stated otherwise. Toluene and hexanes were distilled from potassium; 1,4-dimethylbenzene was distilled from sodium; dichloromethane was distilled from CaH_{2}; propan-2-ol was refluxed with CaO and distilled and then further refluxed with CaH_{2} and distilled again. Trimethylphosphine and $\mathrm{Os}_{3}(\mathrm{CO})_{12}^{-}$ were used as purchased. Carbon-13 $\mathrm{CO}\left(99.5 \mathrm{at} . \%^{13} \mathrm{C}\right.$ and $10.1 \mathrm{at} . \%^{18} \mathrm{O}$) was used in the labeling of complexes with ${ }^{13} \mathrm{CO}$. Samples to be examined with ${ }^{1} \mathrm{H}$ NMR spectroscopy before and after photolysis were contained in NMR tubes fitted with a J. Young valve.

All NMR data were recorded at the specified temperatures on a Bruker AMX 400 instrument at an operating frequency of $400.13,161.98$, and 100.61 MHz for ${ }^{1} \mathrm{H}$. ${ }^{31} \mathrm{P}$, and ${ }^{13} \mathrm{C}$ nuclei, respectively. The chemical shifts for ${ }^{31} P$ NMR are referenced to external $85 \% \quad \mathrm{H}_{3} \mathrm{PO}_{4}$. Mass spectra (MS) were obtained with a HewlettPackard Model 5985 mass spectrometer. Spectra were determined in the EI (70 eV), CI (isobutane) or FAB mode (FAB, m-nitrobenzyl alcohol, xenon). For molecules of molecular mass above $1000 \mathrm{~m} / \mathrm{z}$ the MS were obtained on a Kratos-MS-50 instrument (University of British Columbia, regional facility). The pattern of the envelope of ions for the parent ion or the species of highest mass matched the computer simulated pattern for all complexes considered. Microanalyses were performed by the Simon Fraser Utiversity Microanalytical Laboratory.

3.2. Synthesis of $\mathrm{Os}_{3}\left(\mathrm{CO}_{4}\left(\mathrm{PMc}_{3}\right)_{3}\right.$

The preparation of $\mathrm{Os}_{3}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{3}\right)_{3}$ has been previously reported [29] but it was made as a side product in the synthesis of $\mathrm{Os}_{3}(\mathrm{CO})_{12-n}\left(\mathrm{PMe}_{3}\right)_{n}(n=1,2)$ and the yield was 11%. An alternative method that produces the trisubstituted cluster as the only cluster species is described herein. This metticd is analogous to the prepara-
tion of $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)_{3}[4,5]$ and $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PEt}_{3}\right)_{3}[6]$ and it produced similar products to those reported by Bellachioma et al. [28] and Martin et al. [30]. A slurry of $\mathrm{Os}_{3}(\mathrm{CO})_{12}(0.700 \mathrm{~g}, 0.772 \mathrm{mmol})$ in 1,4-dimethylbenzene (10 ml) was prepared in a Pyrex Carius tube, to which was added $\mathrm{PMe}_{3}(0.30 \mathrm{ml}, 2.9 \mathrm{mmol})$ and additional 1,4-dimethylbenzene (10 ml). The reaction vessel was sealed under N_{2} and heated at $130^{\circ} \mathrm{C}$ with stirring for 6 h to give a clear, deep-orange solution. The solvent and excess PMe_{3} were removed under vacuum. The products of the reaction were: $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{3}\right)_{3}$, $\mathrm{Os}(\mathrm{CO})_{4} \mathrm{PMe}_{3}$ and $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)_{2}$, as identified by IR spectroscopy $[4-6,29-3 i]$. The complex $\mathrm{Os}(\mathrm{CO})_{4} \mathrm{PMe}_{3}(0.150 \mathrm{~g})$ was obtained by sublimation $\left(9.8 \times 10^{-3} \mathrm{~mm} \mathrm{Hg}\right)$ at $20-40^{\circ} \mathrm{C}$ to a probe cooled by cold water or it could also be separated by column chromatography (silica gel, $20 \times 1 \mathrm{~cm}, \quad \mathrm{C}_{6} \mathrm{H}_{14}{ }^{-}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The mononuclear product $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)_{2}$ could be abstracted by sublimation $\left(9.8 \times 10^{-3} \mathrm{~mm}\right.$ Hg) at $70-90^{\circ} \mathrm{C}$ to a probe at $-78^{\circ} \mathrm{C}$. Attempted chromatography on a silica gel column (silica gel, 20×1 $\mathrm{cm}, \mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was unsuccessful. (It is known that $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)_{2}$, reacts with O_{2} to produce $\left.\mathrm{Os}(\mathrm{CO})_{2}[\mathrm{O}(\mathrm{CO}) \mathrm{O}]\left(\mathrm{PMe}_{3}\right)_{2}\right)$ [31]. The crude $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{3}\right)_{3}$ was purified by recrystallization from $\mathrm{C}_{6} \mathrm{H}_{1+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$. In this way $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{3}\right)_{3}(0.25$ g. 31% yield) was obtained as orange air-stable crystals. For the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ experiments ${ }^{13} \mathrm{CO}$-labeled $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{3}\right)_{3}$ was prepared in an identical manner to the unlabeled cluster except ${ }^{13} \mathrm{CO}$-labeled $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ was employed [32] (typically $46-49 \%{ }^{13} \mathrm{C}$-enriched. ${ }^{1+}$ For $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{3}\right)_{3}:$ IR $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right), \nu(\mathrm{CO}): 1988(\mathrm{~m}, \mathrm{sh})$, 1975(s), 1932(m), 1920(m,sh) cm^{-1}; $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \nu(\mathrm{CO}):$ 1977(sh,m), 1965(vs,br), 1920(s) $\mathrm{cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}\right): \delta 1.78\left(\mathrm{~d}, \mathrm{PMe}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{H}}=10.0 \mathrm{~Hz}\right)$; ${ }^{31} \mathrm{P}\left({ }^{\top} \mathrm{H}\right) \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}\right): \delta-58.62\left(\mathrm{~s}, \mathrm{PMe}_{3}\right)$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 / 3,-40^{\circ} \mathrm{C}\right): \delta 23.2$ $\left(\mathrm{d}, \mathrm{PMe}_{3},{ }^{1} J_{\mathrm{P}-\mathrm{C}}=37.2 \mathrm{~Hz}\right), 183.6(\mathrm{~s}, 3 \mathrm{C}, \mathrm{CO}), 196.7$ ($\mathrm{s}, 6 \mathrm{C}, \mathrm{CO}$); ${ }^{15} \mathrm{MS}(\mathrm{EI}, \mathrm{m} / \mathrm{z}): 1052\left(\mathrm{M}^{+}\right)$; Anal. Calc. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Os}_{3} \mathrm{P}_{3}$: C, 20.57: $\mathrm{H}, 2.59$. Found: C, 20.72; H, 2.61.

3.3. Synthesis of mer-cis-Os(CO) $)_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}$ (mer-cis-2)

To $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{3}\right)_{3}(0.090 \mathrm{~g}, 0.086 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}(15 \mathrm{ml})$ was added 4 ml of a saturated solution of Cl_{2} in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ at $0^{\circ} \mathrm{C}$. The solution

[^7]instantly went opaque red-orange and then rapidly (\approx 10 s) altered to a pale yellow solution (presumably due to the excess Cl_{2}) along with a fine white precipitate. The mixture was stirred further for 10 min with no apparent change, the solvent was reduced to a minimum by evacuation and $\mathrm{C}_{6} \mathrm{H}_{14}(10 \mathrm{ml})$ was added to the mixture to complete the precipitation. An IR spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\nu(\mathrm{CO})$ region) of the supernatant indicated the presence of fac-2 and trace amounts of 3 in the solution. The supernatant was removed and the remaining white solid washed several times with $\mathrm{C}_{6} \mathrm{H}_{14}$. The crude white solid was recrystallized from THF-C ${ }_{6} \mathrm{H}_{14}$ to afford colorless crystals of mer-cis-2 ($0.095 \mathrm{~g}, 88 \%$ yield). The ${ }^{13} \mathrm{CO}$-labeled mer-cis- 2 was prepared in an identical manner from ${ }^{1 .} \mathrm{CO}$-labeled $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{3}\right)_{3}$. For mer-cis-2: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \nu(\mathrm{CO}): 2145(\mathrm{vw}), 2066(\mathrm{~s})$, 2019(m) cm '; ($\mathrm{C}_{6} \mathrm{H}_{6}$), $\nu(\mathrm{CO}): 2064(\mathrm{~s}), 2010(\mathrm{~m})$ cm^{-1}; (nujol), $\nu(\mathrm{Os}-\mathrm{Cl}): 310(\mathrm{~m}), 279(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{rt}\right): \delta 1.96\left(\mathrm{~d}, \mathrm{CH}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{H}}=11.0 \mathrm{~Hz}\right)$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{rt}\right): \delta-38.42\left(\mathrm{~s}, \mathrm{PMe}_{3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{\prime} \mathrm{H}\right\}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1 / 3,-40^{\circ} \mathrm{C}\right): \delta, 18.1\left(\mathrm{~d}, \mathrm{CH}_{3}\right.$, $\left.{ }^{1} J_{\mathrm{P}_{-\mathrm{C}}}=42.3 \mathrm{~Hz}\right), 167.2\left(\mathrm{~d}, 1 \mathrm{C}, \mathrm{CO},{ }^{2} J_{\mathrm{P}_{-\mathrm{C}}}=6.9 \mathrm{~Hz}\right)$, 172.4 (d, 2C, CO, ${ }^{2} J_{\mathrm{P}-\mathrm{C}}=7.6 \mathrm{~Hz}$); MS (EI, m/z): 422 $\left(\mathrm{M}^{+}\right)$; mp: at $119^{\circ} \mathrm{C}$ the colorless crystals became opaque and there was no further change to $200^{\circ} \mathrm{C}$; Anal. Calc. for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{OsP}$: C, 17.11; $\mathrm{H}, 2.15$. Found: C, 17.14; H, 2.09.

3.4. Synthesis of fac- $\mathrm{Os}\left(\mathrm{CO}_{3} \mathrm{iPMe}_{3}\right) \mathrm{Cl}_{2}($ fac-2)

A solution of mer-cis-2 $(0.140 \mathrm{~g}, 0.332 \mathrm{mmol})$ in THF (15 ml) was allowed to stir at room temperature in the dark under N_{2} for 9 days. After this time the IR $\nu(\mathrm{CO})$ bands due to mer-cis-2 were no longer present in the solution and had been replaced by the IR $\nu(\mathrm{CO})$ bands of fac-2, and much weaker bands due to 3 (see below). The solution was evaporated to dryness under vacuum. The remaining white solid was chromatographed on a silica gel column ($1 \times 20 \mathrm{~cm}$); the fac-2 was eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{C}_{6} \mathrm{H}_{14}(4 / 1)$ and $3(0.010 \mathrm{~g}$, 8%) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude, white solid of fac-2 ($0.095 \mathrm{~g}, 68 \%$) was recrystallized from $\mathrm{C}_{6} \mathrm{H}_{14}{ }^{-}$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ to afford colorless crystals. The ${ }^{13} \mathrm{CO}$-labeled fac-2 was prepared in an identical manner from ${ }^{13} \mathrm{CO}$ labeled mer-cis-2. For fac-2: IR $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right), \nu(\mathrm{CO})$: 2126(m), 2048(m), 2005(m) cm^{-1}; $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \nu(\mathrm{CO})$: $2127(\mathrm{~m}), 2054(\mathrm{~s}), 2012(\mathrm{nn}) \mathrm{cm}^{-1} ;\left(\mathrm{CH}_{3} \mathrm{CN}\right), \nu(\mathrm{CO}):$ 2128(m), 2054(s), 2012(s) $\mathrm{cm}^{-1} ;\left(\mathrm{C}_{6} \mathrm{H}_{6}\right), \nu(\mathrm{CO}):$ 2126(m), 2050(s), 2004(s) cm^{-1}; (nujol), $\nu(\mathrm{Os}-\mathrm{Cl})$: 318(s), 296(s) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{rt}\right): \delta 1.81(\mathrm{~d}$, $\left.\mathrm{CH}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{H}}=11.2 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{rt}\right): \delta$ $-33.59\left(s, \mathrm{PMe}_{3}\right) ;{ }^{1.3} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad\left(\mathrm{CD}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1 / 3\right.$, $\left.-40^{\circ} \mathrm{C}\right): \delta 12.6\left(\mathrm{~d}, \mathrm{CH}_{3},{ }^{1} J_{\mathrm{P}-\mathrm{C}}=40.4 \mathrm{~Hz}\right), 167.2(\mathrm{~d}$, $\left.2 \mathrm{C}, \mathrm{CO},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=9.2 \mathrm{~Hz}\right), 168.0\left(\mathrm{~d}, 1 \mathrm{C}, \mathrm{CO},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=\right.$ 107.6 Hz); MS (EI, m/z): $422\left(\mathrm{M}^{+}\right)$, (CI, m/z): 387 $(\mathrm{M}-\mathrm{Cl})^{+} ; \mathrm{mp}:$ at $119^{\circ} \mathrm{C}$ the colorless crystals became
opaque and there was no further change to $200^{\circ} \mathrm{C}$; Anal. Calc. for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{OsP}$: C, 17.11; $\mathrm{H}, 2.15$. Found: C, 17.30; H, 2.16.

3.5. Synthesis of $\left[\mathrm{Os}\left(\mathrm{CO}_{2}\left(\mathrm{PMe}_{3}\right)(\mathrm{Cl})(\mu-\mathrm{Cl})\right]_{2}\right.$ (3)

A solution of mer-cis-2 $(0.020 \mathrm{~g}, 0.048 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}-\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{ml}, 2 / 1 \mathrm{v} / \mathrm{v}$, respectively) was stirred in the dark at $50^{\circ} \mathrm{C}$ for 18 h . After this period, the $\mathrm{IR} \nu(\mathrm{CO})$ bands for mer-cis- 2 were no longer present in the solution and the sole product, as suggested by the IR $\nu(\mathrm{CO})$ bands present, was 3 . The solution was evaporated to dryness on the vacuum line and the white solid recrystallized from $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}-$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford small white star-shaped crystals of 3 ($0.010 \mathrm{~g}, 54 \%$ yield). Repeated attempts to grow crystals suitable for crystallographic analysis were unsuccessful. The ${ }^{13} \mathrm{CO}$-labeled 3 was prepared from ${ }^{13} \mathrm{CO}$ labeled mer-cis-2. For 3: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \nu(\mathrm{CO}): 2050(\mathrm{~s})$, 1983(s) cm^{-1}; ($\left.\mathrm{CH}_{3} \mathrm{CN}\right), \nu(\mathrm{CO}): 2047(\mathrm{~s}), 1971(\mathrm{~s})$ cm^{-1}; (nujol), $\nu(\mathrm{Os}-\mathrm{Cl}): 314(\mathrm{~m}), 273(\mathrm{~m}), 242(\mathrm{~m})$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 35^{\circ} \mathrm{C}\right): \delta 1.76\left(\mathrm{~d}, \mathrm{CH}_{3}\right.$, $\left.{ }^{2} J_{\mathrm{P}-\mathrm{H}}=11.7 \mathrm{~Hz}\right), 1.80\left(\mathrm{~d}, \mathrm{CH}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{H}}=11.7 \mathrm{~Hz}\right)$; relative intensities $3: 1$, respectively; ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}\left(\mathrm{CD}_{3} \mathrm{CN}\right.$, $35^{\circ} \mathrm{C}$): $\delta-30.73$ ($\mathrm{s}, \mathrm{PMe}_{3}$), -30.37 ($\mathrm{s}, \mathrm{PMe}_{3}$); relative ratios 3:1, respectively; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ $\left.1 / 3,-40^{\circ} \mathrm{C}\right): \delta 15.5\left(\mathrm{~d}, \mathrm{PMe}_{3},{ }^{1} J_{\mathrm{P}-\mathrm{C}}=43.1 \mathrm{~Hz}\right)$, $170.5\left(\mathrm{~d}, 4 \mathrm{C}, \mathrm{CO},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=10.0 \mathrm{~Hz}\right), 170.9(\mathrm{~d}, \mathrm{br}, 11 \mathrm{C}$, $\left.\mathrm{CO},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=11.0 \mathrm{~Hz}\right), 171.9\left(\mathrm{~d}, \mathrm{br}, 12 \mathrm{C}, \mathrm{CO},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=\right.$ 5.8 Hz); MS (EI, m/z): 753 ($\mathrm{M}^{+}-\mathrm{Cl}$); mp: $257^{\circ} \mathrm{C}$ dec.; Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{Cl}_{4} \mathrm{O}_{4} \mathrm{Os}_{2} \mathrm{P}_{2}$: C, 15.27; H, 2.31 . Found: C, 15.75; H, 2.38 .

3.6. Preparation of fac- $\mathrm{Os}\left(\mathrm{CO}_{3}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{CCl}_{3}\right) \mathrm{Cl}\right.$ (4)

Typically $5 \times 10^{-3}-1.0 \times 10^{-2} \mathrm{~g}$ of $\mathrm{Os}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{3}\right)$ were placed in a vial, in the drybox, in minimal light and to this was added $\mathrm{C}_{6} \mathrm{H}_{6}(0.5 \mathrm{ml})$ and, depending on the experiment, an excess (10 drops) of CCl_{4}. This mixture was then filtered and transferred to a 5 mm NMR tube fitted with a J. Young valve. The room temperature sample was maintained in the absence of light and a ${ }^{1} H$ NMR spectrum obtained of the sample with a presaturation pulse program on a Bruker AMX 400 spectrometer. The air-cooled sample was then photolyzed (200 W medium pressure mercury arc lamp. water and air cooled) through a CS 3-74 filtei ($\lambda>400$ nm) for 2-3 h. ${ }^{11}$ The ${ }^{1} \mathrm{H}$ NMR spectrum was reacquired. Immediately following this procedure an IR spectrum of the sample was obtained in $\mathrm{C}_{6} \mathrm{H}_{6}$.

3.7. X-ray structure determinations

Intensity data were collected at room temperature on an Enraf Nonius diffractometer by using graphite-monochromated Mo Ka radiation, in bisecting geometry.

Background measurements for each scan were made by extending the scan width by 25% on each side of the peak. The final unit cell was determined from 25 wellcentered high-angle reflections chosen to be as widely scattered in reciprocal space as possible. Crystal orientation was checked by monitoring three orientation standards after every 200 reflections. Two intensity standards were measured at intervals of 60 min of exposure time.

The final least-squares refinement included coordinates and anisotropic thermal parameters for all non- H atoms. An extinction parameter was refined for both structures. Counterweights were employed in the weighting schemes. Complex scattering factors for neutral atoms [34] were used in the calculation of structure factors. The NRCVAX Crystal Structure System suite of programs [35] was used in data reduction, structural solution and initial refinement. The program suite CKYSTALS [36] was employed in the latter stages, including placement of the H atoms. All computations were carried out on a MicroVAX-II computer.

3.8. Molecular structure of mer-cis-Os($\left.\mathrm{CO}_{3}\right)_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}$ (mer-cis-2)

X-ray quality crystals of mer-cis-2 proved difficult to grow as the complex has a tendency to form crystals that are of the appropriate size in only two dimensions (i.e.. platelike). This problem was overcome by dissolving mer-cis- 2 in a minimum amount of THF in an NMR tube and layering $\mathrm{C}_{6} \mathrm{H}_{14}$ on top of the THF and placing the NMR tube within a Schlenk tube filled with N_{2} in the freezer (at $\sim-40^{\circ} \mathrm{C}$). A colorless block cut from a large needle was used for intensity measurements. The two intensity standards showed random variations corresponding to scale changes of $\pm 2 \%$. A Gaussian correction was applied [37]. The H atoms were located directly from a difference map. The H atoms were given a common isotropic temperature factor, and their coordinates refined, with the $\mathrm{C}-\mathrm{H}$ distances restraine j to their mean. The largest residual peak in the final difference map was $0.44(9) \mathrm{e}^{-3}{ }^{-3}$, located $\mathrm{i} .10 \AA$ from the Os atom.

3.9. Molecular structure of fac-Os($\left.\mathrm{CO}_{3}\right)_{3}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}$ (fac-2)

X-ray quality crystals of fac-2 also proved difficult to grow for the same reasons as the mer isomer. This problem was overcome by dissolving the compound in a minimum amount of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ in an NMR tube and placing the NMR tube within a Schlenk flask charged with $\mathrm{C}_{6} \mathrm{H}_{14}$. The vessel and the contents were frozen and evacuated and allowed to warm slowly to room temperature, allowed to stand for a day at room temperature before placing the Schlenk tube in the freezer
($\sim-40^{\circ} \mathrm{C}$) to afford suitable crystals. A colorless block cut from a large needle was used for intensity measurements. The two intensity standards showed steady decay corresponding to scale changes of about 14%. An empirical absorption correction [38] was employed, together with a θ-dependent correction for a sphere of 150 $\mu \mathrm{m}$ diameter. There were two crystallographically distinct molecules in the asymmetric unit. The H atoms were placed in calculated positions and linked to the \mathbf{C} atoms that they were attached to; each group of H's were given a common isotropic thermal parameter. The largest residual peak in the final difference map was $0.82(15) \mathrm{e}^{-3}$, located $0.91 \AA$ from $\mathrm{Os}(2)$.

4. Supplementary material

Two pages of discussion relating to bond lengths and bond angles of mer-cis-2 and fac-2. Eleven tables showing the atomic coordinates, bond lengths, bond angles, anisotropic thermal parameters and close intermolecular contacts for mer-cis-2 and fac-2, and the experimental details of the products of the photolysis of $\mathrm{Os}(\mathrm{CO})_{4} \mathrm{PMe}_{3}$ in the presence of CCl_{4}. One figure showing the infrared spectroscopic changes for the reaction of fac-2/3 under CO.

Acknowledgements

We wish to thank the National Science Foundation (D.R.T.) and the Natural Sciences and Engiseering Research Council of Canada (R.K.P.) for the support of this research.

References

[1] J.L. Male, R.K. Pomeroy, D.R. Tyler, Organometallics, in press.
[2] P.G. Griftith, G. Moad. E. Rizzardo, D.H. Solomon, Aust. J. Chem. 36 (1983) 397.
[3] A.L.J. Beckwith. V.W. Bowry, G. Moad. J. Org. Chem. 53 (1988) !632.
[4] C.W. Bradford. R.S. Nyholm. J. Chem. Soc.. Chem. Commun.. (1967) 384.
[5] C.W. Bradford, W. van Bronswijk, P..J.H. Clark, R.S. Nyholm, J. Chem. Soc. A., (1970) 2889.
[6] A.J. Deeming, B.F.G. Johnson, J. Lewis, J. Chem. Suc. A, (1970) 897.
[7] A. Aràneo. A. Trovati, Inorg. Chim. Acta 3 (1969) 471.
[8] F. L'Eplattenier, F. Calderazzo, Inorg. Chem. 6 (1967) 2092.
[9] E. Benedetti, G. Braca, G. Sbrana, F. Salivetti, B. Grassi, J. Organomet. Chem. 37 (1972) 361.
[10] L.R. Martin. F.W.B. Einstein, R.K. Pomeroy, Organometallics 7 (1988) 294.
[1I] B.F.G. Johnson, J. Lewis, B.E Reichert, K.T. Schorpp, J. Chem. Soc., Dalton Trans., (1976) 1403.
[12] F.W.B. Einstein, T. Jones, R.K. Pomeroy, P. Rushman, J. Am. Chem. Soc. 106 (1984) 2707.
[13] H.B. Davis, F.W.B. Einstein. P.G. Glavina, T. Jones, R.K. Pomeroy, P. Rushman. Organometallics 8 (1989) 1030.
[14] H.B. Davis, F.W.B. Einstein, V.J. Johnston, R.K. Pomeroy, J. Organomet. Chem. 319 (1987) C25.
[15] P.S. Braterman, Metal Carbonyl Spectra, Academic, London, 1975. p. 52.
[16] F. Piacenti, M. Bianchi, E. Benedetti, G. Braca, Inorg. Chem. 7 (1968) 1815.
[17] B.F.G. Johnston, R.D. Johnston, J. Lewis, J. Chem. Soc., A (1969) 792.
[18] C.F.J. Barnard, J.A. Daniels. J. Jeffery, R.J. Mawby, J. Chem. Soc., Dalton Trans., (1976) 953.
[19] S. Merlino, G. Montagnoli, Acta Crystallogr., Sect. B 24 (1968) 424.
[20] W.A. Herrmann, E. Herdtweck, A. Schäfer, Chem. Ber. 121 (1988) 1907-1911.
[21] A.A. Ismail, F. Sauriol, I.S. Butler, Inorg. Chem. 28 (1989) 1007.
[22] G.E. Ball, B.E. Mann, J. Chem. Soc., Chem. Commun., (1992) 561.
[23] R.A. Plowman. F.G.A. Stone, Inorg. Chem. 1 (1962) 518.
[24] W.R. Roper, J. Organomet. Chem. 300 (1986) 167.
[25] G.R. Clark, K. Marsden. W.R. Roper, L.J. Wright, J. Am. Chem. Soc. 102 (1980) 1206.
[26] M.A. Gallop, W.R. Roper. Adv. Organomet. Chem. 25 (1986) 121.
[27] A.S. Goldman. D.R. Tyler, Organometallics 3 (1984) 449.
[28] G. Bellachioma, G. Cardaci, A. Macchioni, P. Zanazzi, Inorg. Chem. 32 (1993) 547.
[29] A.J. Deeming, M. Underhill. J. Chem. Soc., Dalton Trans., (1973) 2727.
[30] L.R. Martin, F.W.B. Einstein, R.K. Pomeroy, Inorg. Chem. 24 (1985) 2777.
[31] H.B. Davis, PhD Thesis, Simon Fraser University, Jan. 1991.
[32] A.K. Ma, F.W.B. Einstein, V.J. Johnston, R.K. Pomeroy, Organometallics 9 (1990) 45.
[33] R.F. Alex, R.K. Pomeroy, Organometallics 6 (1987) 2437.
[34] International Tables for X-ray Crystallography. Vol. IV, Kynoch Press, Birmingham, England (present distributor: Kluwer Academic, Dordrecht, Netherlands), 1974, p. 99.
[35] E.J. Gabe, Y. Le Page. J.-P. Charland. F.L. Lee, P.S. White. J. Appl. Cryst. 22 (1989) 384.
[36] D.J. Watkin, C.K. Prout, J.R. Carruthers, P.W. Betteridge. CRYSTALS (issue 10), Chemical Crystallography Laboratory, University of Oxford, Oxford. England, 1984.
[37] W.R. Busing, H.A. Levy, Acta Crystallogr. 10 (1957) 180.
[38] A.C.T. North, D.C. Phillips, F.S. Mathews, Acta Crystallogr., Sect. A 24 (1968) 351.

[^0]: * Corresponding author. e-mail: pomeroy@sfu.ca
 ${ }^{1}$ Also corresponding author. e-mail: dtyler@oregon.uoregon.edu

[^1]: ${ }^{1}$ In $\mathrm{CD}_{3} \mathrm{CN}$ at $35^{\circ} \mathrm{C}$.
 In $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CD}_{2} \mathrm{Cl}_{2}(3 / 1)$ at $-40^{\circ} \mathrm{C}$.
 In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature (i.e., samples were removed from the reaction solution. $\mathrm{CD}_{3} \mathrm{CN}$ removed and the remaining solid dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
 In $\mathrm{C}_{6} \mathrm{H}_{6}$ at room temperature.
 From Ref. [4.5]. in nujol.
 From Ref. [6], in cyclohexane.

[^2]: ${ }^{\text {? }}$ Some examples of two-bond carbon-phosphorus NMR couplings in similar systems are: $\mathrm{Os}_{4}(\mathrm{CO})_{15}\left(\mathrm{PMe}_{3}\right) \delta 181.6(\mathrm{~d}, \mathrm{CO}, 4 \mathrm{C}$, ${ }^{2} J_{\mathrm{P}_{-\mathrm{C}}}=4.1 \mathrm{~Hz}$ [10]; $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PEt}_{3}\right)_{2} \delta 197.1\left(\mathrm{~d}, \mathrm{CO}, 2 \mathrm{C},{ }^{2} J_{\mathrm{P}-\mathrm{C}}\right.$ $\approx 7 \mathrm{~Hz}), \delta 196.2\left(\mathrm{~d}, \mathrm{CO}, 2 \mathrm{C},{ }^{2} J_{\mathrm{P}-\mathrm{C}} \approx 7 \mathrm{~Hz}\right)[11]$.
 ${ }^{3}$ For comparison, the two-bond carbon-phosphonus couplings are 71.1 Hz with the PMe_{3} ligand trans to a CO ligand and 13.2 and 8.9 Hz with PMe_{3} cis to a CO ligand in :he $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\left.\left(\mathrm{Me}_{3} \mathrm{P}\right)(\mathrm{OC})_{4} \mathrm{O} \ldots \mathrm{O}\right)_{5}(1)$ with the PNic_{3} ligand cis to the $\mathrm{Os}-\mathrm{W}$ bond ard trans to a CO ligand [12-14].

[^3]: ${ }^{4}$ For the mer-trans-isomer, the symmetric $\mathrm{A}_{1}(\mathrm{Os}-\mathrm{Cl})$ stretch in the IR spectrum would be expected to be weak or of negligible intensity. The nujol IR spectral results are therefore also consistent with a mer-cis-arrangement of the ligands.
 ${ }^{5}$ The assignment of these bands is based on that for the $\left[\mathrm{Ru}(\mathrm{CO})_{3}(\mathrm{Cl})(\mu-\mathrm{Cl})\right]_{2}$ compound, which has three $\nu(\mathrm{Ru}-\mathrm{Cl})$ bands at 331,290 , and $260 \mathrm{~cm}^{-1}$, assigned to one terminal and two bridged $\mathrm{Ru}-\mathrm{Cl}$ stretches, respectively $[9,16-18]$.

[^4]: similar to that of $\left[\mathrm{Ru}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)(\mathrm{ClX} \mu-\mathrm{Cl})\right]_{2}[16,17]$ which is based
 upon $\left[\mathrm{Ru}(\mathrm{CO})_{3}(\mathrm{Cl})(\mu-\mathrm{Cl})\right]_{2}[19]$. However, both ruthenium upon $\left[\mathrm{Ru}(\mathrm{CO})_{3}(\mathrm{Cl})(\mu-\mathrm{Cl})_{2}[19]\right.$. However, both ruthenium compounds exist as only one isomer in solution [9.16], whereas NMR spectroscopy indicates there are two isomers of 3 present in solution.
 ${ }^{7}$ Other isomers of $\left[\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)(\mathrm{Cl})(\mu-\mathrm{Cl})\right]_{2}(3)$ with $\mathrm{C}_{2}, \mathrm{C}_{21}$ and C, point group symmetry were considered less likely based on the number of IR $\nu(\mathrm{CO})$ and $\nu(\mathrm{Os}-\mathrm{Cl})$ bands predicted from group
 theory.

[^5]: ${ }^{8}$ The assignments were confirmed by comparison with the spectra of authentic compounds under the same conditions.

[^6]: ${ }^{9}$ Such reactivity is not unexpected. The $\left[\mathrm{M}\left(\mathrm{CCl}_{3}\right)(\mathrm{Cl})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right](\mathrm{M}=\mathrm{Ru}, \mathrm{Os})$ complexes were proposed as intermediates in the formation of $\mathrm{M}(\mathrm{Cl})_{2}\left(=\mathrm{CCl}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$, but both molecules resisted all attempts at isolation [24-26]. The instability of these CCl_{3} species was attributed to spontancous chloride loss or a rearrangement [26]. When a solution of the putative fac- $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{CCl}_{3}\right) \mathrm{Cl}$ was left standing for 2 days in the dark at room temperature, it converted to $\mathrm{fac}-\mathbf{2}$, as demonstrated by IR spectroscopy ${ }^{10.11}$.
 ${ }^{10} \mathrm{~A}$ control experiment showed that when $\mathrm{Os}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{3}\right)$ was irradiated $(\lambda>400 \mathrm{~nm})$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ for 3 h . no other species were observed except the starting material. This result suggests that $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$ (which might then lead to $\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)(\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$ in the presence of $\left.\mathrm{CCl}_{4}\right)$ is not an intermediate in the reaction, and it also indicates that $\mathrm{Os}_{11}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right)$ was probably not produced.
 ${ }^{11}$ Irradiation $(\lambda>400 \mathrm{~nm})$ of $\mathrm{Os}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{3}\right)$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ in the presence of an excess of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 drops) for 2 h showed no reaction by ${ }^{1} \mathrm{H}$ NMR and IR spectroscopy. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{3}\right)_{3}$, mer-cis-2, and fac- 2 in $\mathrm{C}_{6} \mathrm{H}_{6}$ indicate that none of these complexes are initially formed on irradiation of $\mathrm{Os}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{3}\right)$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ in the presence of CCl_{4}. Both the IR and ${ }^{1} \mathrm{H}$ NMR spectrum of the initial photoproduct do, however, suggest that it is similar in structure to fac-2 (also see Supplementary Material).
 ${ }^{12}$ Note that $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{CCl}_{2}\right) \mathrm{Cl}_{2}$ is proposed as the product in the photochemical reaction of $\mathrm{Fe}(\mathrm{CO})_{5}$ with CCl_{4} [27], and, urthermore, $\mathrm{Os}_{1}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CCl}_{2}\right) \mathrm{Cl}_{2}$ is also well characterized [25].
 ${ }^{13}$ These compounds would be analogous to $\left[\mathrm{Os}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{CH}_{3}\right)\right]^{+}[\mathrm{I}]^{-}$, which has $\nu(\mathrm{CO})$ bands at $2158(\mathrm{~s})$, 2098(s), and $207 \mathrm{I}(\mathrm{vs}) \mathrm{cm}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ [28] (the compourd $\left[\mathrm{Os}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{3}\right)(\mathrm{Br})^{+}\right] \mathrm{Br}^{-}$has $\mathrm{C}-\mathrm{O}$ stretching bands at $2182(\mathrm{~m})$, $2128(\mathrm{~s}), 2107(\mathrm{vs})$, and $2080(\mathrm{~s}) \mathrm{cm}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (H. Nagra, R.K. Pomeroy, unpublished results)). The CCl_{3} and Cl ligands are more electron withdrawing than the CH_{3} group and therefore the ${ }^{\prime}(\mathrm{CO})$ frequencies would be expected to be much higher than those for the methyl derivative, which is not observed.

[^7]: ${ }^{14}$ The mass spectra (MS) were simulated with a computer program written by Dr. W.K. Leong in which the MS of ${ }^{13} \mathrm{C}$-labeled species are simulated using a modified version of a program which prompts for the identity and numbers of each element using the 'dummy' elements C * and O^{*} for ${ }^{13} \mathrm{C}$ and ${ }^{18} \mathrm{O}$. respectively.
 ${ }^{15}$ At higher temperatures the carbonyl signals broaden due to carbon- 13 carbonyl ligand exchange analogous to that previously observed for $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{3}[33]$.

